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Abstract

An explicit equation for X-ray diffraction by a ®nite
one-dimensional paracrystal is derived. Based on this
equation, the broadenings of re¯ections due to limited
size and disorder are discussed. It depicts the para-
crystalline diffraction over the whole reciprocal space,
including the small-angle region where it degenerates
into the Guinier equation for small-angle X-ray
scattering. Positions of diffraction peaks by paracrystals
are not periodic. Peaks shift to lower angles compared to
those predicted by the average lattice constant. The
shifts increase with increasing order of re¯ections and
degree of disorder. If the heights and widths of the
paracrystalline diffraction are treated as reduced
quantities, they are functions of a single variable,
N1=2g. The width of the ®rst diffraction depends mostly
on size broadening for a natural paracrystal, where
N1=2g � 0.1±0.2. A method to measure the paracrystal-
line disorder and size using a single diffraction pro®le is
proposed based on the equation of paracrystal diffrac-
tion. An initial value of size may be obtained using the
Scherrer equation, that of the degree of disorder is then
estimated by the �� law. Final values of the parameters
are determined through least-squares re®nement against
observed pro®les. An equation of diffraction by a
polydisperse one-dimensional paracrystal system is
presented for `box' distribution of sizes. The width of
the diffraction decreases with increasing breadth of the
size distribution.

1. Introduction

The classic theory of X-ray diffraction by one-dimen-
sional paracrystals was founded by Zernike & Prins
(1927) and was developed mainly by Hosemann and co-
workers (Hosemann & Bagchi, 1962; Vainstein, 1966).
Many studies of the second kind of disorder within
polymers have been carried out in the light of this theory
during the last decades (BaltaÂ -Calleja & Vonk, 1989).
The equation widely used for investigating diffraction by
a one-dimensional paracrystal was derived assuming an
in®nitely large size (Vainstein, 1966; BaltaÂ -Calleja &
Vonk, 1989). Many natural paracrystals, however, have
only limited length. For example, some observations on
the paracrystal size match an empirical relation, called
the �� law (BaltaÂ -Calleja & Hosemann, 1980). It says

that N1=2 � ��=g, where N is the number of subunits in
the system and g is the degree of disorder. �� is usually
small (between 0.1 and 0.2), with 0.14 as average. The
number of subunits in a natural paracrystal with
g � 0:05 is therefore only about 8, far from `in®nitely
large'. Consequently, the size effect on the paracrystal
diffraction has to be taken into consideration for a real
substance. The method of Bonart et al. (1963) may
separate its contribution to the diffraction width from
that of disorder approximately. A formula is lacking for
the diffraction pro®le by a ®nite paracrystal.

In an article on the basis of the statistical concept of a
paracrystal model, BraÈmer (1975) obtained some results
for diffraction by a ®nite one-dimensional paracrystal
following the classic approach involving multiple
convolutions. Expressed as the real part of some
complex numbers, his formula did not develop any
insight into the one-dimensional paracrystal diffraction.

Here, an explicit formula for X-ray diffraction by a
one-dimensional paracrystal is derived through a more
straightforward approach. The equation describes the
paracrystal diffraction over the whole reciprocal space,
including the small-angle region. It is applicable over a
wide range of crystallite size and degree of disorder. A
method to measure the degree of disorder and the
paracrystal size using a single diffraction peak is
proposed based on this formula. Furthermore, it reveals
a series of new features of paracrystal diffraction.

2. Theory

The Fourier transform of a one-dimensional structure
composed of N subunits is

F�X� � PN
k�1

exp�2�ixkX�; �1�

where xk is the position of the kth subunit and X is the
reciprocal-space coordinate. For simplicity, the subunit
is assumed to be a point atom with a scattering factor of
one. The intensity of X-ray diffraction by this system is
then

I�X� � PN
k�1

PN
k0�1

exp�2�i�xk ÿ xk0 �X�: �2�



If an `averaged lattice' exists for a one-dimensional
paracrystal, the location of its kth atom may be written
as

xk � ka�Pk
j�1

gja; �3�

where a is the lattice constant of the `average lattice' and
gj is an uncorrelated Gaussian random variable with
zero mean.

Substitution of (3) into (2) gives

I�h� � PN
k�1

PN
k0�1

exp�2�i�kÿ k0�h�

� exp 2�i
Pk
j�1

gj ÿ
Pk0
j0�1

gj0

 !
h

" #
; �4�

where

h � aX �5�
is the continuous reciprocal-space coordinate in units of
1=a. Each term within the double summation in (4) is
connected only with the difference between k and k0.
There are N terms with k � k0, N ÿ 1 terms with
kÿ k0 � 1, N ÿ 1 terms with kÿ k0 � ÿ1, N ÿ 2 terms
with kÿ k0 � 2 and the same with kÿ k0 � ÿ2, . . . .
After grouping the terms with the same differences
between k's, the double summation in (4) may be
replaced with a single one:

I�h� � N � PNÿ1

k�1

�N ÿ k� exp
ÿ
2�ikh

�
exp 2�ih

Pk
j�1

gj

 !"

� exp
ÿÿ2�ikh

�
exp ÿ2�ih

Pk
j�1

gj

 !#
: �6�

The intensity I(h), as shown, depends on details of the
distribution of atoms in the system. Observed intensities,
however, are those averaged over the random variable
gj . It is known (Barakat, 1987) that the average of the gj -
related part in (6) may be expressed with the aid of hg2i,
the variance of gj :

exp �2�ih
Pk
j�1

gj

 !* +
� exp�ÿ2�2h2khg2i�: �7�

The averaged X-ray diffraction intensity by a one-
dimensional paracrystal is then

hI�h�i � N � PNÿ1

k�1

�N ÿ k��exp�2�ikh� � exp�ÿ2�ikh��

� exp�ÿ2�2h2khg2i�: �8�
Two new parameters are introduced for convenience:

� � 2�h �9�
� � exp�ÿ2�2h2g2�; �10�

where hg2i1=2 is simpli®ed as g and is called the degree of
disorder of the paracrystal. We may rewrite (8) as

hI���i � N � 2
PNÿ1

k�1

�N ÿ k��k cos k�: �11�

Explicit forms of the two summations in this equation
were derived with the aid of the following formulas
(Gradshteyn & Ryzhik, 1980):

PNÿ1

k�1

�k cos k� � �� cos �ÿ �2 ÿ �N cos N�

� �N�1 cos�N ÿ 1���
� �1ÿ 2� cos �� �2�ÿ1 �12�PNÿ1

k�1

�k sin k� � �� sin �ÿ �N sin N�

� �N�1 sin�N ÿ 1���
� �1ÿ 2� cos �� �2�ÿ1: �13�

Multiplying both sides of (12) by N, we obtain the ®rst
summation in (11). Starting from derivatives of (12) and
(13) with respect to �, we get the second summation
after a tedious, but not dif®cult, derivation. The ®nal
explicit equation for the diffraction intensity by a one-
dimensional paracrystal is

hI���i � �N�1ÿ �2���1ÿ 2� cos �� �2�ÿ1

ÿ �2��cos�ÿ 2�� �2 cos���
� �1ÿ 2� cos �� �2�ÿ2

� f2�N�1�cos�N � 1��ÿ 2� cos N�

� �2 cos�N ÿ 1���g�1ÿ 2� cos �� �2�ÿ2: �14�

The intensity is obviously continuous in reciprocal
space. By removal of the disorder from the system, an
ideal one-dimensional crystal appears, where N point
atoms are separated exactly by the constant a. Diffrac-
tion intensity by this ideal system should be a series of �
functions separated by 1=a in reciprocal space and with a
height of N 2. The ratio of diffraction intensities by a
paracrystal and an ideal crystal at a reciprocal-lattice
point is

hi���i � �1=N��1ÿ �2��1ÿ 2� cos�� �2�ÿ1

ÿ �1=N2��2��cos �ÿ 2�� �2 cos���
� �1ÿ 2� cos�� �2�ÿ2

� �1=N2�f2�N�1�cos�N � 1��ÿ 2� cos N�

� �2 cos�N ÿ 1���g�1ÿ 2� cos �� �2�ÿ2: �15�

This is, therefore, the reduced diffraction intensity by a
one-dimensional paracrystal. Substitution of � � 2�n,
where n is an integer, into this equation gives
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hi�2n��i � �1=N���1� �n�=�1ÿ �n��
ÿ �1=N2��2�n=�1ÿ �n�2�
� �1=N2��2�N�1

n =�1ÿ �n�2�; �16�

where �n � exp�ÿ2�2n2g2�. The new equation repre-
sents the nth-order paracrystal diffraction.

3. Results

The diffraction intensities by ®nite one-dimensional
paracrystals with N1=2g of 0.14 are calculated using (15)
for degree of disorder 0.007, 0.05, 0.08 and 0.10,
respectively, over a range of � from 0 to 20�. They are
shown in Fig. 1. The intensities are almost discrete for
small g. They decrease signi®cantly with increasing �
even when the degree of disorder is very small. Widths
of diffractions increase quickly with increasing � and/or
g. High background emerges for large � and/or large g.
Fig. 2 shows curves of hi���i against � (thick lines) for
g � 0:05 with various N, i.e. N1=2g are 0.10, 0.14, 0.2 and
1.0 in (a), (b), (c) and (d), respectively. The width of
curve hi���i, as shown, increases with decreasing size. All
these results are more or less consistent with previous
studies (Hosemann & Bagchi, 1962; BaltaÂ -Calleja &
Vonk, 1989).

New insights into the paracrystal diffraction are also
developed based upon (15). They are described below.

3.1. Approximations of equation (15)

The most important application of the classic theory is
the prediction of the width of diffraction by a one-
dimensional paracrystal. The diffraction of a paracrystal
with very large size is (Vainstein, 1966; BaltaÂ -Calleja &
Vonk, 1989)

hi���i � 1

N

�1ÿ �2�
�1ÿ 2� cos�� �2� : �17�

The integral width of nth-order diffraction is �2n2g2

according to this equation.
Equation (17) corresponds to the ®rst term of (15).

On the right-hand side of (15), the ®rst term is 1=N
dependent, while the second and third are 1=N2

dependent. It is obvious that (15) degenerates into (17)
when N is very large.

Diffraction curves calculated using (17) are shown
with broken lines in Fig. 2. As mentioned above, the
continuous lines represent those calculated using (15).
Peaks calculated with (17) are always higher and
narrower, compared to those using (15). The difference
is large for natural paracrystals where N1=2g is equal to
0.14, as shown in Fig. 2(b); it is signi®cant even when
N1=2g is equal to 0.2, the upper limit of ��, as shown in
Fig. 2(c). Except for the small-angle part, the diffraction
pattern may be approximated using (17) only when
N1=2g is close to 1, as seen in Fig. 2(d).

Fig. 1. Curves of hi���i vs � for ®nite paracrystals (N1=2g � 0:14) with degrees of disorder of 0.007, 0.05, 0.08 and 0.10, respectively. The sizes of the
structures are N � 400, 8, 3 and 2 respectively. hi�2��i is the most intense observable in a diffraction pattern. It is, however, always lower than
hi�0�i, which is equal to 1.0. Intensities decrease with increasing �. Widths of diffraction increase with increasing g and �. The background
increases quickly with � for larger g.
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The error of the approximated equation (17) may be
estimated over the range of the ®rst peak, the most
important part of paracrystal diffraction data. The R
factor may be de®ned as

R � P�2

���1

jI�15���� ÿ KI�17����j
� P�2

���1

I�15����; �18�

where I�15���� and I�17���� are the ®rst-order
diffraction calculated using (15) and (17), respectively.
The range of the summation, �2 ÿ �1, should cover the
whole peak. The constant K is adjusted so that the
areas under the curves are the same for I�15���� and
I�17����.

Curves of R against N1=2g are calculated for degree of
disorder from 0.01 to 0.10. All the curves, regardless of
the magnitude of g, are similar. As a representative, the
curve for g � 0:06 is shown in Fig. 3. The R factor for the
lower and upper limits of ��, i.e. N1=2g � 0:1 and 0.2, are
1.22 and 0.68, respectively. It is obvious that X-ray
diffraction by a natural paracrystal cannot be approxi-
mated by (17).

Another approximation for paracrystal diffraction
is

hi���i � 1

N

�1ÿ �2�
1ÿ 2� cos �� �2

ÿ 1

N2

2��cos�ÿ 2�� �2 cos ��
�1ÿ 2� cos �� �2�2 : �19�

This is obtained by omission of only the third term of
(15). Curves of hi���i against � in the region of the ®rst-
order diffraction are shown in Figs. 4(a), (b), (c) and (d)
and correspond with N1=2g � 0:14, 0.25, 0.35 and 1.0,
respectively. The thick lines in the ®gures represent the
peaks calculated using (15) and the thin, broken and
dotted lines are the contributions from the ®rst term,
summations of ®rst and second terms and the third term,
respectively. When N1=2g is 0.35, the contribution of the
third term is very small, the sum of the other two terms
provides a close approximation for the one-dimensional
paracrystal diffraction, as shown in Fig. 4(c).

3.2. Background

As shown in Fig. 1, the background of paracrystal
diffraction increases with increasing g and increasing �.
We may estimate the background by substitution of
� � �2nÿ 1��, the midpoint between diffraction peaks,
into (15). The third term can be ignored when n and/or
N is large. We have, therefore,

Fig. 2. Curves of hi���i vs � (thick solid lines) for paracrystals with g � 0:05 and N � 4, 8, 16 and 400 as shown in (a), (b), (c) and (d), respectively.
Note that the scale of hi���i in (d) is ten times less than that in the others. Both peaks and widths of diffractions decrease with increasing N.
Curves marked by broken lines are calculated using equation (17) or the ®rst term of equation (15). They differ from thick solid lines,
calculated using (15), in that (i) they are always higher and narrower, (ii) they have negligible value in the small-angle region, and (iii) there is
no ripple between peaks. The difference between the two kinds of curves is large for a natural paracrystal, where N1=2g � 0:2; it may be
neglected only when N1=2g is close to 1.0, where the two curves are almost identical except in the small-angle region.
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hi�2n�ÿ ��i � 1

N

1ÿ �
1� ��

1

N2

2�

�1� ��2 : �20�

Refer to Fig. 1; if curves are drawn by connecting the
minima of hi���i, they will match this equation. As
shown in both the ®gure and the equation, the back-
ground of one-dimensional paracrystal diffraction
asymptotically approaches 1=N at high angle.

3.3. Peak shift

It is remarkable that the diffraction peaks by a
paracrystal are not periodic. For example, the six peaks
for the paracrystal with g � 0:05 and N1=2g � 0:14 (see
Fig. 1) are located at 0.9994, 1.9986, 2.9974, 3.9954,
4.9924 and 5.9890, respectively. None is located exactly
at a multiple of 2� or a multiple of 1=a, the latter is the
average reciprocal-lattice constant. The position of the
nth-order diffraction peak may be written as

hn � nÿ �n; �21�
where �n, called the peak shift, takes small positive
values. These can be obtained in diffraction pro®les
calculated using (15). �n depends on the values of N, g
and n. It increases with increasing g, increasing n and
decreasing N. The curves of �n against n for
N1=2g � 0:14, g � 0:02, 0.04, 0.06, 0.08 and 0.10 are
shown in Fig. 5 (solid lines).

The peak shift of paracrystal diffraction may be
observed even in calculated diffraction pro®les using the
approximated equation (17) (Hosemann, 1962). Equa-
tion (17) may represent paracrystal diffraction only

when N is very large. Consequently, the peak shift
obtained from (17) should be its lower limit for speci®c g
and n. The limit of �n, �0n, can also be calculated directly
from (17). Taking the derivative of (17) with respect to �
and setting it equal to zero, we have

g2�n�cos�n ÿ 2�n � �2
n cos�n� � ��2

n ÿ 1� sin �n; �22�
where �n � 2��nÿ �0n�, the peak position of nth-order
diffraction. The trigonometric functions in the equation
can be simpli®ed because �0n is small: cos�n � 1 and
sin �n � ÿ2��0n. Substitution of these approximations
into (22) gives immediately

�0n � ng2�1ÿ �n�=�1� �n�: �23�
Curves of �0n against n calculated using this equation are
shown in Fig. 5 also (dashed lines). The two kinds of
curves (solid lines and dashed lines) are closer for
smaller g or higher n. They coincide with each other
when g is less 0.04. In other words, �n is N independent
for small g (< 0.04). When g is big, a smaller size of the
paracrystal may cause a larger peak shift.

Similarly, the minima of paracrystal diffraction are
not periodic either. The approximated shift can be
obtained by (17) too:

hnÿ1=2 � �nÿ 1
2 � ÿ �0nÿ1=2; �24�

where �0nÿ1=2 is another positive small number:

�0nÿ1=2 � �nÿ 1
2 �g2�1� �nÿ1=2�=�1ÿ �nÿ1=2�: �25�

3.4. Small-angle scattering

As shown in Fig. 2 (thick lines), (15) predicts
reasonable small-angle scattering for a paracrystal. They
are always the most intense re¯ections in the pattern.
The formula for small-angle scattering by a one-
dimensional paracrystal can also be derived from (15).
When � is close to zero, all the exponential and trigo-
nometric functions in the equation approach 1 at higher
or lower speed. Equation (15) can then be greatly
simpli®ed. In the small-angle region, we have
cos� � 1ÿ �2=2; � � 1ÿ g2�2=2; �N � 1ÿ Ng2�2=2
and

cos N� � 1ÿ 1
2 N2�2 � 1

24 N4�4: �26�
Substitution of these approximations into (15) results in

hi���i � 1ÿ 1
12 N2�2: �27�

This equation is similar to the Guinier formula (Guinier,
1939) in that the small-angle X-ray scattering increases
with decreasing squared angle.

Curves of hi���i against �2 in the small-angle range
are shown in Figs. 6(a), (b), (c) and (d) for g � 0:05 and
N � 50, 71, 87 and 100, respectively. Circles are calcu-
lated using (15), straight lines using the approximate
equation (27).

Fig. 3. Curve of R against N1=2g when g � 0:06. The R factor represents
the error given by the approximate formula (17), estimated based
on ®rst-order diffraction. It is very large for a ®nite paracrystal.
Paracrystal diffraction cannot be approximated by equation (17).
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3.5. Diffraction as a function of N1=2g

The size effect on X-ray diffraction intensity by a
paracrystal may be investigated theoretically over a
wider range than that restricted by the �� law. For
example, the intensities of the ®rst peak (� � 2�) may
be calculated for various values of g and N without
limitation of N1=2g. It is interesting that when hi�2��i are
drawn as curves against N1=2g, all data points are
matched with a single curve, as shown in Fig. 7(a). In
other words, hi�2��i is a function of a single variable, i.e.
N1=2g. The actual size of a paracrystal with N subunits is
Na� N1=2ga, where g is the degree of disorder, a is a

constant of the `average lattice'. N1=2ga may be regarded
as the size ¯uctuation of the paracrystal. N1=2g, the ratio
of the ¯uctuation to the lattice constant, is the reduced
size ¯uctuation of the system. The curve in Fig. 7(a)
re¯ects a relationship between two reduced parameters.
The axis of ordinates represents the reduced intensity,
the ratio of the intensity from a paracrystal to that from
an ideal crystal. The abscissa represents N1=2g, the
reduced size ¯uctuation.

As shown in Fig. 7(a), intensities hi�2��i decrease with
increasing N1=2g. The rate of change, however, varies
along the curve. The maximum rate of change occurs at
a special point in the curve, the point of in¯ection. The

Fig. 4. Diffraction pro®le (thick lines) of ®rst order (� � 2�) compared to contributions from the ®rst term (thin lines), the third term (dotted
lines) and the ®rst plus second terms (dashed lines) of equation (15). With a ®xed degree of disorder g of 0.05, N1=2g is 0.14, 0.25 0.35 and 1.0 for
(a), (b), (c) and (d), respectively. None of the three terms in equation (15) may be ignored to de®ne the diffraction pro®le for a natural
paracrystal when N1=2g is 0.1 to 0.2. The third term may be ignored when N1=2g is about 0.35, as shown in (c). Both second and third terms are
ignored only when N1=2g is close to 1, as shown in (d).
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derivative of hi�2��i with respect to N1=2g reaches its
minimum at this point, where hi�2��i � 0:68 and
N1=2g � 0:244, as shown in Fig. 7 (b).

3.6. Width of diffraction as a function of N1=2g

Half-width, de®ned as the full width at half the
maximum intensity and denoted by W, is used here as
usual for convenience.

Diffraction by paracrystals with various parameters
(N and g) were calculated using (15), and values of W
were measured for peaks at � � 2�, 4� and 6� on these
curves. When W are plotted as a curve of W=�2g2 against
N1=2g, the data points for each peak follow a single
curve. The curves for peaks 1, 2 and 3 are shown in Fig.
8. �2g2 re¯ects the broadening effect of the second kind
of disorder. W=�2g2 is obviously a reduced width and it
is also a function of single variable, N1=2g. In practice,
the curve for peak 1 is the most important, it ®ts the
following empirical formula:

W=�2g2 � 0:256 92� 0:363 15 N1=2g� 0:089 462=Ng2:

�28�

For a natural paracrystal, where N1=2g is less than or
equal to 0.2, the ®rst and second terms in (28) may be
neglected compared to the third. Equation (28) can then
be approximated by

W=�2g2 � 0:089 462=Ng2 �29�
or

W � 0:88=N: �30�
This is the famous Scherrer equation (Scherrer, 1918)
for measurement of crystallite size. The second kind of
disorder makes only a very small contribution to the
broadening of the ®rst-order diffraction of a natural
paracrystal. Practically, the paracrystal size may be
estimated by the width of the ®rst-order diffraction
using the Scherrer equation.

3.7. Distribution of paracrystal sizes

Equation (15) is valid for monodisperse system, i.e. all
paracrystals in the system have the same size. For a
polydisperse system, only the diffraction, averaged over
the radiated part of the sample, is observable. It may be
described as

hi���i � PNmax

N�N min

hi���iP�N �; �31�

where N is a random integer variable, P(N ) is its prob-
ability distribution function, Nmax and Nmin are the upper
and the lower limits of the sum, respectively. The ®rst
moment of N,

hN i � PN max

N�Nmin

NP�N �; �32�

is called the mean or the average size. Substitution of
(15) and the speci®c form of P(N ) into (31) will result in
a speci®c formula for the distribution function.

For example, a normalized `box' distribution may be
de®ned by

P�N � � 1=�2�� 1�; hN i ÿ� � N � hN i ��
0; otherwise;

�
�33�

where hN i is the average size, 2� is the width of the
distribution. When (15) and (32) are substituted into
(31), one obtains

hi���i � 1

hN i
�1ÿ �2�

1ÿ 2� cos �� �2

ÿ 1

hN i2
2��cos�ÿ 2�� �2 cos ��
�1ÿ 2� cos �� �2�2

� 1

hN i2
2�hN i�1

�1ÿ 2� cos �� �2�3
T3

2�� 1
; �34�

Fig. 5. Peak shift of nth-order paracrystal diffraction. The solid lines
represent readings on a diffraction pattern calculated using
equation (15) for a paracrystal with N1=2g � 0:14. The dashed lines
are from equation (23) for a paracrystal with N1=2g � 1. The peak
shift quickly increases with increasing g and increasing n.
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where

T3 � ���2�cos �N max � 1��ÿ 2� cos N max�

� �2 cos �N max ÿ 1��� ÿ ���1�cos �N max � 2��
ÿ 2� cos �N max � 1��� �2 cos N max��
ÿ �ÿ��1�cos N min�ÿ 2� cos �N min ÿ 1��
� �2 cos �N min ÿ 2��� � �ÿ��cos �N min � 1��
ÿ 2� cos N min�� �2 cos �N min ÿ 1���; �35�

where Nmax � hN i ��, Nmin � hN i ÿ�.
Curves of hi���i against � for hN i � 16, g � 0:05 and

� � 0, 4, 8, 12 and 16 are shown in Fig. 9. For a poly-
disperse system, the diffraction pro®le depends not only
on the average size and the degree of disorder but also
upon the size distribution. As shown in Fig. 9, the
breadth of the diffraction pro®le decreases with
increasing width of the size distribution. The ripples in
the tail of the pro®le are smoothed out when the size
distribution is not too narrow.

4. Applications

Two methods have been applied to measure the para-
crystal size and the degree of disorder. The Fourier
transform method (Warren & Averbach, 1950; Warren,
1959) is the most sound technologically. It requires,
however, high-quality experimental data and special
skill for data processing (Somashekar et al., 1989; Hall &
Somashekar, 1991). The integral breadth method (BaltaÂ -
Calleja & Vonk, 1989) is simple and convenient but
assumptions regarding the relationship between the
structural parameters (N and g) and the breadth of the
peaks have to be made. A common dif®culty in practice
for both techniques is that two or more re¯ection orders
are required. In many cases, however, only a single order
is observed in diffraction by polymer material.

The explicit formula for X-ray diffraction by a para-
crystal, equation (15) of this paper, makes it possible to
re®ne the crystallite size and degree of disorder against
the observed diffraction pro®le. Furthermore, single-
order re¯ection may be enough for the re®nement. Here

Fig. 6. Guinier plots, i.e. curves of hi���i vs �2 in the small-angle region of paracrystals with g � 0:05 and N � 50, 71, 87 and 100 for (a), (b), (c) and
(d), respectively. Markers are calculated using equation (15), straight lines using equation (27).
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we suggest a two-step procedure to carry out the
measurement. First, an initial value of N is estimated
from the width of the ®rst-order re¯ection using (30),
the Scherrer equation; the initial degree of disorder is
then derived from the �� law. Second, calculated
diffraction data are obtained from the initial values of N
and g using (15); the two parameters are then adjusted
against observed diffraction until the best ®t between
the calculated diffraction and the observed is reached.

This may be implemented using a standard least-squares
technique.

The experimental pro®le of re¯ection 110 by poly-
ethylene ®ber is used to test the procedure. This curve is
taken from Fig. 2 of Hall & Somashekar (1991). The
ripple in the tail part of the curve indicates that the
sample is likely to be a monodisperse system. In the ®rst
step, the initial values of the parameters are estimated as
N � 17, g � 0:034. The simplex algorithm (Press et al.,
1986) is used to implement the re®nement procedure.
The ®nal values of the parameters are N � 17 and
g � 0:0415. The result is consistent with that of Hall &
Somashekar (N � 17 and g � 0:04). The calculated
pro®le using these parameters is compared to the
experimental one in Fig. 10. Arbitrary values in a wide
range are used as initial parameters for the re®nement.
All converge to the same result. These tests can
be summarized as follows: �5; 0:10� ! �17; 0:0412�;
�10; 0:06� ! �17; 0:0413�; �50; 0:02� ! �17; 0:0413�;
�100; 0:01� ! �17; 0:0419�; �150; 0:12� ! �17; 0:0416�.
The ®rst number in parentheses is the value of N, the
second is g.

Diffraction peaks are always superimposed on a
background in an observed diffraction pattern. Accurate
estimate of the background, required by the Fourier

Fig. 7. (a) Curve of hi�2��i vs N1=2g. The paracrystal diffraction is a
function of a single variable, i.e. N1=2g. It decreases quickly with
increasing N1=2g. (b) Derivative of hi�2��i with respect to N1=2g. The
minimum of the curve corresponds to the point of in¯ection of the
curve in (a).

Fig. 8. Curves of W=�2g2 vs N1=2g for n � 1, 2 and 3. W is the full width
at half-maximum of the diffraction pro®le. W=�2g2 is another
function of the single parameter N1=2g for any diffraction peak.
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transform technique, is a dif®cult task. With the re®ne-
ment method we suggest here, background may be
adjusted at the same time as when N and g are re®ned.
The best values for both the background and the
structural parameters (N and g) can be obtained
simultaneously.

5. Discussion

The validity and the limitations of the main result of this
paper, equation (15), depend on the assumptions we
made in the theory. An implicit assumption is made
when (14) and (15) are derived from (12) and (13), i.e.
the degree of disorder should not be zero. In other
words, � cannot be equal to 1. Otherwise, all these
equations are meaningless when � � 2�n (n is an
integer). Equation (15) is then not applicable to an ideal
one-dimensional crystal with ®nite size.

The explicit assumption is that the positions of
subunits in a one-dimensional paracrystal may be
described by (3). These positions, however, cannot be
related to an ideal in®nite crystal lattice. The `averaged
lattice' extends over only a limited region, depending on
the magnitude of the degree of disorder. The region is
larger for a smaller g and vice versa.

The actual distance between any point and its Nth
neighbor is Na� N1=2ga. When N reaches a special
value, i.e. N� � 1=g2, the distance becomes N�a� a. In
other words, the N�th neighbor is no longer distin-
guishable from its (N� � 1)th neighbor, nor its

(N� ÿ 1)th one. The relation expressed by (3) com-
pletely breaks at this point. We conclude that the theory
developed in this paper is valid only when g > 0 and
N � 1=g2.

It is interesting to compare the diffraction by a one-
dimensional paracrystal with that by a helix possessing
angular disorder. Both these structures are one-dimen-
sional with cumulative disorder. The equations for both
kinds of diffraction are very much alike. For example,
equation (3.2) of Barakat (1987) and equation (16) of
this paper are not distinguishable in form. However,
their meanings are quite different. The former describes
the contribution of the nth Bessel function to the layer-
line intensity of the disordered helix, while the latter
gives the diffraction by a one-dimensional paracrystal at
the nth reciprocal-lattice point. Equation (21) of Mu et
al. (1997) and equation (15) of this paper are also similar
in form and different in meaning. One of them describes
the distribution of the nth Bessel function in the reci-
procal space near the layer line, while the other gives the
distribution of paracrystal diffraction in the reciprocal
space near the reciprocal-lattice point.

The more important difference in the diffractions by
the two disordered structures is the symmetry of the
diffraction. The distribution of contributions from the

Fig. 9. The in¯uence of size distribution on the ®rst-order paracrystal
diffraction. The average size, the degree of disorder and the shape of
the size distribution (`box') are all the same for the ®ve curves. The
only difference is the breadth of the distribution, � � 0, 4, 8, 12 and
16. The diffraction by the monodisperse paracrystal has the
maximum width and the width decreases with increasing breadth
of the size distribution.

Fig. 10. Comparison of calculated and observed diffraction pro®les.
The solid line is a 110 re¯ection by polyethylene ®bers, taken from
Hall & Somashekar (1991). The dots represent the calculated
diffraction using the size and the degree of disorder measured by
the single-peak technique.
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nth-order Bessel function is symmetric about the layer
line. The paracrystal diffraction is, however, asymmetric
about the reciprocal-lattice point and the diffraction
position even deviates from the latter. Equation (3.2) of
Barakat always gives the maximum of the intensity,
while equation (16) of this paper may not give the
maximum owing to the peak shift.

This discrepancy is because of the different de®nitions
of � and � in the two cases. As shown in equations (9)
and (10) of this paper, the parameters � and � are
dependent. They are independent for the disordered
helix, as shown in equations (13) and (14) in Mu et al.
(1997). Actually, the symmetry of the diffraction
depends on those of the trigonometric and exponential
functions in the equations. For a one-dimensional
paracrystal, cos � and cos N� are symmetric while � and
�N monotonously decrease with �2. As a result, the
diffractions by a one-dimensional paracrystal are
asymmetric about their maxima and the asymmetry
causes the aperiodicity of positions of maxima at last.
For the disordered helix, the exponential functions are �
independent, i.e. they are symmetric also. Their
diffractions are, then, symmetric about their maxima
and no peak shift is observed.

The method to measure the paracrystal size and the
degree of disorder, suggested in this paper, is applicable
to monodisperse system. It may be applied also to a
polydisperse system to obtain an `averaged' size and the
degree of disorder. This kind of `averaged' size,
however, is usually larger than N , given by equation
(32). Information about crystallite-size distribution is
very important for a polydisperse system. A new method
to measure the distribution has been proposed recently
(Bodor et al., 1996). A re®nement method for the
measurement may be developed when formulas for the
diffraction pro®le for other size distributions are avail-
able in addition to (34) and (35) for the `box' distribu-
tion.
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